

I

CULVERTS FLOWING FULL

Figure C-18

HEADWATER DEPTH FOR C.M. PIPE CULVERTS WITH INLET CONTROL

Figure C-19

COLUMBIA, MO.

Figure C-20

COLUMBIA, MO.

Ē∞ o <u>-</u>60 - 50 CONNECT K & Ve READ HL -40 0 **0**% CONNECT READ 30 - 30 20 - 20 20 n ю 30 9.0 8.0 -80 2.0 7.0 1.9 -60 6.0 ю 5.0 1.8 5.0 4.0 COEFFICIENT 50 4.0 30 in) 3.0 HL-HEAD LOSS (11) 2.0 345 K W = WIDTH OF OPENING (11) 70 K=1.0+ENTRANCE 80 2.0 CRITICAL DEPTH (11) - 90 DISCHARGE (cfu) 100 OCITY 1.2 ≻ 0.90 u Ve = CRITICAL 0.70 03 0.60 1.0 0.50 200 0.2 0.40 0.30 • • 30 300 -OJ 0.20 400 2.0 500 0.0 0.03 600 HWc 0.02 700 - 800 GRADE Sc 0.01 1.0 H₩c≈dc+HL HL = hy+he n + 0.012 CRITICAL FLOW FOR BOX CULVERTS Figure C-21

į

А

CULVERTS WITH INLET CONTROL

Figure C-23

TABLE C-1 RATIONAL METHOD RUNOFF COEFFICIENTS BY LAND USE TYPE For Use in Q=CiA

Land Use District and Zoning	% I.C.**	Land Slope	6* Mo.	1* Yr.	2 Yr.	5 Yr.	10 Yr.	25 Yr.	50 Yr.	100 Yr.
Low Density	25	0-2%	.28	.30	.33	.36	.38	.42	.44	.46
Residential		2-7%	.31	.34	.37	.40	.43	.47	.50	.52
R1, R2		7%+	.35	.38	.41	.45	.48	.52	.55	.58
High Density	45	0-2%	.35	.38	.41	.45	.48	.52	.55	.58
Residential		2-7%	.39	.42	.45	.50	.53	.57	.60	.63
R3,R4,PUD		7%+	.43	.47	.50	.54	.58	.62	.65	.69
Mobile Home	60	0-2%	.39	.42	.45	.50	.53	.57	.60	.63
Park		2-7%	.43	.47	.50	.54	.58	.62	.65	.69
RMH		7%+	.48	.51	.55	.59	.63	.67	.71	.74
Commercial C-2, C-P	95	0-2% 2-7% 7%+	.65 .68 .72	.69 .72 .75	.73 .76 .79	.78 .81 .84	.83 .85 .87	.88 .90 .93	.91 .93 .96	.95 .97 .99
Commercial C-1, C-3	80	0-2% 2-7% 7%+	.56 .61 .65	.60 .65 .69	.64 .69 .73	.69 .74 .78	.73 .78 .83	.77 .83 .88	.81 .86 .91	.85 .90 .95
Industrial	70	0-2%	.48	.51	.55	.59	.63	.67	.71	.74
M-1, M-C,		2-7%	.52	.56	.60	.64	.68	.72	.76	.79
M-R		7%+	.56	.60	.64	.69	.73	.77	.81	.85
Office 0-1, 0-2	60	0-2% 2-7% 7%+	.39 .43 .48	.42 .47 .51	.45 .50 .55	.50 .54 .59	.53 .58 .63	.57 .62 .67	.60 .65 .71	.63 .69 .74

Runoff Coefficient (C) Return Period

*Special Note: All design storms utilizing wet antecedent conditions will use a "C" value not less than that for a 10-year return period.

**I.C. refers to impervious cover

TABLE C-2 RATIONAL METHOD RUNOFF COEFFICIENTS FOR COMPOSITE ANALYSIS FOR USE IN Q = CiA

Character of Surface			Runoff Coefficients (C) Return Period						
		6 Mo.	1 Yr.	2 Yrs.	5 Yrs.	10 Yrs.	25 Yrs.	50 Yrs.	100 Yrs.
Streets:									
Asphaltic Concrete	.70	.74 .76	.78 .78	.81 .82	.85 .87	.89 .90	.93 .94	.96 .97	.99
Drives and W	alks								
(Concrete).76	.78	.82	.87	.90	.94	.97	.99	
Roofs		.72	.75	.79	.84	.87	.93	.96	.99
Lawns, Clay	Soil-Light (Loams)								
Flat	0-2%	.13	.14	.15	.16	.17	.19	.20	.21
Average	2-7%	.15	.16	.17	.18	.20	.21	.23	.24
Steep	7%+	.23	.24	.25	.26	.27	.29	.32	.34
Lawns, Clay	Soil (Heavy)								
Flat	0.2%	.14	.15	.16	.18	.19	.20	.21	.22
Average	2-7%	.17	.18	.20	.21	.23	.24	.26	.27
Steep	7%+	.23	.25	.27	.29	.31	.33	.35	.37
Undeveloped and Pastu	Woodlands								
Class Caila I	ight (Lagues)								
Clay Solis - I	Light (Loams)	10	21	22	25	27	20	21	22
Γlat Δverage	0-2/0	.19	.21	.23	.23	.27	.29	.31	.55
Steep	2-776 7%+	.34	.28	.40	.44	.47	.51	.55	.58
Clay Soil - H	eavv								
Flat	0-2%	.23	.25	.27	.29	.31	.33	.35	.37
Average	2-7%	.30	.32	.35	.38	.41	.44	.47	.50
Steed	7%+	.38	.41	.44	.48	.51	.55	.59	.62

TABLE C-3

ROUGHNESS COEFFICIENTS

Conduit Material	Mannings N
Closed Conduits	
Concrete	0.015
Corrugated metal	0.025
Corrugated metal with paved invert	0.019
Plastic pipe	0.013
Vitrified clay pipe	0.015
Open Channels	
Lined channels	
Asphalt	0.015
Brick	0.015
Concrete	0.015
Rubble or riprap	0.030
Vegetal	0.035
Excavated or dredged	
Earth, straight and uniform	0.025
Earth, winding	0.030
Rock	0.040
Unmaintained	0.050-0.140
Natural channels	
Regular section	0.050
Irregular section with pools	0.070

TABLE C-4 RETURN PERIOD

LAND USE

RETURN FREQUENCY

Residential	10 year
Commercial & industrial	25 year
Critical & flood prone areas	100 year

TABLE C-5 JUNCTION OR STRUCTURE COEFFICIENT OF LOSS

CaseI	Reference	Coefficient
No	Figure	Description of Condition
I 0.50	C-12	Inlet on Main Line
II 0.25	C-12	Inlet on Main Line with Branch Lateral
III	C-12	Manhole on Main Line with 45° Branch Lateral
IV 0.25	C-12	Manhole on Main Line with 90° Branch Lateral
V 0.75	C-13	45° Wye Connection or cut-in
VI 1.25	C-13	Inlet or Manhole at Beginning of Line
VII 0.50 0.40	C-13	Conduit on Curves for 90°* Curve radius = diameter Curve radius = (2 to 8) diameter
0.25		Curve radius = $(8 \text{ to } 20)$ diameter
VIII 0 50	C-13	Bends where radius is equal to diameter 90° Bend
0.48		60° Bend
0.35		

0.20

Manhole on line with 60° Lateral0.35Manhole on Line with 22-1/2° Lateral0.35

0.75

* Where bends other than 90° are used, the 90° bend coefficient can be used with the following percentage factor applied: 60° Bend - 85%; 45° Bend - 70%; 22-1/2% Bend - 40%

TABLE C-5

HEAD LOSS COEFFICIENTS DUE TO SUDDEN ENLARGEMENTS AND CONTRACTIONS

D2 **	SUDDEN ENLARGEMENTS	SUDDEN
CONTRACTIONS		
D1	Kj	Kj
12	0.10	0.08
1.4	0.23	0.18
1.6	0.35	0.25
1.8	0.44	0.33
2.0	0.52	0.36
2.5	0.65	0.40
3.0	0.72	0.42
4.0	0.80	0.44
5.0	0.84	0.45
10.0	0.89	0.46
>10.0	0.91	0.47
**D2		
Ratio	of larger to smaller diameter.	

D1

TABLE C-6

CULVERT LOSSES

Coefficient k_{e} to apply to velocity head $\frac{\nabla^{2}}{2g}$ for determination of head

loss at entrance to a structure, such as a culvert or conduit, operating full or partly full with control as the outlet.

Entrance head loss $H_e = k_e \frac{V^2}{2g}$

Type of Sturcture and Design of Entrance

Coefficient ke

Pipe, Concrete

Projecting from fill, socket end (groove-end)	0.2
Projecting from fill, sq. cut end	0.5
Headwall or headwall and wingwalls	
Socket end of pipe (grove-end)	0.2
Square-edge	0.5
Rounder (radius = 1/12D)	0.2
Mitered to conform to fill slope	0.7
*End-Section conforming to fill slope	0.5

Pipe, or Pipe-Arch, Corrugated Metal

Projecting from fill (no headwall)	0.9
Headwall or headwall and wingwalls	
Square-edge	0.5
Mitered to conform to fill slope	0.7
*End-Section conforming to fill slope	0.5

Box, Reinforced Concrete

Headwall parallel to embankment (no wingwalls)	
Square-edged on 3 edges	0.5
Rounded on 3 edges to radius of 1/12 barrel	
dimension	0.2
Wingwalls at 30° to 75° to barrel	. .
Square-edged at crown	0.4
Crown edge rounded to radius of 1/12 barrel	
dimension	0.2
Wingwalls at 10° to 25° to barrel	0.5
Square-edged at crown	0.5
Wingwalls paralled (extension of sides)	0.7
Square-edged at crown	0.7

*Note: "End Section conforming to fill slope", made of either metal or concrete, are the sections commonly available from manufacturers. From limited hydraulic teste they are equivalent in operation to a headwall in both <u>inlet</u> and <u>outlet</u> control. Some end sections, incorporating a <u>closed</u> taper in their design have a superior hydraulic performance.

TABLE C-7 COMPUTATION OF COMPOSITE ROUGHNESS COEFFICIENT FOR EXCAVATED AND NATURAL CHANNELS

n = (n0 + n1 + n2 + n3 + n4)m

CHANNEL CONDITIONS VALUE

Material Involved no	Earth Rockcut Fine Gravel Coarse Gravel	0.020 0.025 0.024 0.028
Degree of Irregularity n1	Smooth Minor Moderate Severe	$\begin{array}{c} 0.000 \\ 0.005 \\ 0.010 \\ 0.020 \end{array}$
Variation of Channel Cross Section n2	Gradual Alternating Occasionally Alternating Frequently	0.000 0.005 0.010-0.015
Relative Effect Of Obstructions n3	Negligible Minor Appreciable Severe	$\begin{array}{c} 0.000\\ 0.010\text{-}0.015\\ 0.020\text{-}0.030\\ 0.040\text{-}0.060\end{array}$
Vegetation n4	Low Medium High Very High	0.005-0.010 0.010-0.025 0.025-0.050 0.050-0.100
Degree of Meandering m	Minor Appreciable Severe	1.000-1.200 1.200-1.500 1.500

Roughness Coefficient For Lined Channels

Rubble RipRap - n = 0.022

From: Open Channel Hydraulics Ven Te Chow, Ph.D